I ncremental data allocation and reallocation in distributed database systems

Chin,AG

Journal of Database Management; January 2001; 12, 1; Library & Information Science Abstracts (LISA)

pg. 35

Vol. 12, No. 1

Incremental Data Allocation and
ReAllocation in Distributed Database

Systems

AMITA GOYAL CHIN, Virginia Commonwealth University

In a distributed database system, an increase in workload typically necessitates the installation of additional
database servers followed by the implementation of expensive data reorganization strategies. We present the Partial
REALLOCATE and Full REALLOCATE heuristics for efficient data reallocation. Complexity is controlled and cost
minimized by allowing only incremental introduction of servers into the distributed database system. Using first
simple examples and then, a simulator, our framework for incremental growth and data reallocation in distributed
database systems is shown to produce near optimal solutions when compared with exhaustive methods.

INTRODUCTION

Recent years have witnessed an increasing trend of the
implementation of Distributed Database Management Sys-
tem (DDBMS) for more effective access to information. An
important quality of these systems, consisting of n servers
loosely connected via a communication network, is to adjust
to changes in workloads. To service increases in demand, for
example, additional servers may be added to the existing
distributed system and new data allocations computed. Con-
ventionally, this requires a system shutdown and an exhaus-
tive data reallocation. Such static methods are not practical
for most organizations for these methods result in high costs
and in periods of data unavailability.

We present the incremental growth framework to ad-
dress incremental expansion of distributed database systems.
Data is reallocated using one of two data reallocation heuris-
tics - Partial REALLOCATE or Full REALLOCATE. Both
heuristics are greedy, hill-climbing algorithms that compute
new data allocation based on the specified optimization
parameter of the objective cost function. Due to their linear
complexity, both heuristics can be used to solve both small
and large, complex problems, based on organizational needs.
The robustness of the heuristics is demonstrated first by
simple, illustrative examples and then by parametric studies
performed using the SimDDBMS simulator.

The REALLOCATE algorithms in conjunction with
SimDDBMS can be used to answer many practical questions
in distributed database systems. For example, in order to
improve system response time, a database administrator
(DBA) may use SimDDBMS for parametric evaluation. For

example, the DB A may analyze the effect of upgrading CPU
processing capability, increasing network transfer speed, or
adding additional servers into the distributed database sys-
tem. Furthermore, SimDDBMS may easily be modified to
evaluate heterogeneous servers, with different CPU process-
ing capabilities. A DBA may also use SimDDBMS to deter-
mine the impact and cost-benefit analysis of adding some
number, s 2 1, additional servers at one time.

RELATED WORK

Following the pioneering work in (Porcar, 1982) many
researchers have studied the data allocation problem
(Daudpota, 1998; So, Ahmad, and Karlapalem, 1998;
Tamhankar and Ram, 1998; Ladjel, Karlapalem, and Li,
1998). The single data allocation problem has been shown to
be intractable (Eswaran, 1974), which means that as the
problem size increases, problem search space increases expo-
nentially (Garey and Johnson, 1979). Due to the complex
nature of the problem, some researchers (Cornell and Yu,
1990; Rivera-Vega, Varadarajan, and Navathe, 1990; Lee
and Liu Sheng, 1992; Ghosh and Murthy, 1991; Ghosh,
Murthy and Moffett, 1992) have resorted to integer program-
ming methods in search for good solutions. Since optimal
search methods can only be used for small problems, heuristic
methods are often used for solving large data allocation
problems (Apers, 1988; Blankinship, 1991; Cer, Navathe,
and Wiederhold, 1983; Du and Maryanski, 1988).

Researchers have studied both the static data allocation
problem, in which data allocations do not change over time,
and the dynamic data allocation problem (Theel and Pagnia,

Journal of Database Management

Jan - Mar 2001 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

1996; Wolfson, Jajodia, and Huang, 1997; Brunstrom,
Leutenegger, and Simha, 1995), which may be adaptive or
non-adaptive. Adaptive models (Levin, 1982; Son, 1988;
Levin and Morgan, 1978) are implemented when the system
senses a substantial deviation in access activities; these mod-
els determine a one-time reallocation (for a relatively short
period of time) in response to surges in demand. For example,
the volume of reservations for a particular airline route may
increase during a specific season. Therefore, an airline reser-
vation system may temporarily store additional copies of the
files associated with the route at a local server. However, this
is a short-term situation which is resolved by introducing
replicated file copies. Non-adaptive models (Levin, 1982;
Porcar, 1982, Segall, 1976) are employed at the initial system
design stage or upon system reorganization; these models do
not adjust to variations in system activities.

Most previous research on data allocation assumes a
fixed number of servers in the distributed database system
(Carey and Lu, 1986; Chu, 1969, Laning and Leonard, 1983;
Lee and Liu Sheng, 1992; Rivera-Vega, Varadarajan, and
Navathe, 1990). Experiments and simulations are designed to
test DDBMS factors such as the degree of data replication,
workloads per server, and different levels and classes of
queries and transactions (Carey and Lu, 1986; Ciciani, Dias,
and Yu, 1990). Simulation runs vary the number of servers to
arbitrary values. However, these values are fixed per run and
vary only between runs. Incremental system growth and
subsequent data reallocation has not previously been ad-
dressed.

INCREMENTAL GROWTH FRAMEWORK

The incremental growth framework (see Figure 1) is
invoked when system performance, as computed using the
objective cost function, is below the acceptable threshold
(specified by the DBA). To return to an acceptable state, new
servers are introduced incrementally, one at a time, into the
distributed database system. With the introduction of each
new server, a new data reallocation for the system is com-
puted. This process is iteratively executed until acceptable
performance is achieved or the number of servers equals the
number of relations in the distributed database system (the
latter constraint can easily be relaxed in adistributed database
system housing partitioned data).

The incremental growth framework, which can easily
be adapted for one-server or multiple-server systems, can be
used by small, mid-size, and large organizations, each having
distributed database systems of varying size. In one-server
systems, the initial data allocation locates all relations at the
server. In multiple-server systems, the current data allocation
is required as input into the framework.

Additional input information required for the incre-
mental growth framework includes: the database server or
servers, including the local processing capacity; the network
topology, including transmission capacity; the database rela-

]
:
d

e

Inputs:
Database Server(s)

\

} Network Topology

i Database Relations

Queries, Threshold \
1 (Data Allocation) 5
|

|
¥

Introduce new server |g——

v

|
|
i
(REALLOCATE Algorithm

Current Cost >

Threshold Cost Yes —

No

|
: :
{
|

Outputs: *
Database Servers]
New Data Allocation

tions, including relation sizes and selectivities; the query set,
the optimization parameter, and the acceptable threshold for
the optimization parameter.

DEFINITIONS

The relational data model is used to describe the data
and query processing on the data. Only simple queries are
considered. Queries are assumed to be independent and are
solved independently. Queries are processed in parallel in the
distributed database system. To simplify the estimation of
query result sizes, the concept of selectivity (Blankinship,
1991; Chin, 1999; Date, 1991; Goyal, 1994) is utilized.
Attribute values are assumed to be uniformly distributed and
each attribute in a relation is assumed to be independent of all
other attributes in the database. The simple query environ-
ment has been chosen because it has a manageable complex-
ity while remaining realistic and interesting.

The parameters describing the simple query environ-
ment are (Blankinship, 1991; Chin, 1999; Goyal, 1994,

L e

36 Jan - Mar 2001

Journal of Database Management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Vol. 12, No. 1

Hevner and Yao, 1979):

Si: Network Servers,i=1, 2, ..., s, s+1
(S,,, = the new server joining the system)

Rj:Relations,j =12, .,

For each relation Rj,j =13 ey
n;: number of tuples,

a: number of attributes,

Bj: size (in bytes)

For each attribute d_, k=1, 2, ..., a, of relation R;:

p,: attribute density, the number of different values in the
current state of the attribute divided by the number of
possible attribute values. So, 0 <= p, <= 1 (Hevner and
Yao, 1979). During join operations the density is used as
a selectivity coefficient.

W size (in bytes) of the data item in attribute djk

For local transaction processing, each server in the
distributed database system maintains a queue of incoming
requests. Queries are maintained in queue until they are
processed using a First In, First Out (FIFO) order.

Finally, the distributed database system maintains a
centralized data dictionary housing the following informa-
tion (Blankinship, 1991; Goyal, 1994; Hevner and Yao,
1979):

» for each relation Rj,j = e n,a, Bj, and SJ. (server to
which relation Rj is allocated)

* for each attribute dj.k, k=12.... a, of relation Rj: Py Wi
and b}.k (projected size, in bytes, of attribute djk with no
duplicate values)

Optimizing query strategies is not within the scope of
this research. However, since the optimal data allocation is
dependent on the implemented query strategy, when comput-
ing new data allocations, Algorithm Serial (Hevner and Yao,
1979) for query processing is implemented. Any query opti-
mization algorithm from the research literature, however, can
be used in place of Algorithm Serial.

Algorithm Serial (Hevner and Yao, 1979) considers
serial strategies to minimize total transmission time in the
simple query environment. For each query q accessing A
relations, there are A! possible combinations for processing
q. The serial strategy consists of transmitting each relation,
starting with Rv to the next relation in a serial order. The
strategy is represented by R, 5 R, — ... > R , where G is the
number of relations in the query (Hevner and Yao, 1979).
Consider for example a query which accesses relations A, B,
and C. Then, the A! = 6 processing combinations for the query
areeA->B—-C,A->C—->B,B>A—>C,B>C—-AC
— A - B, C - B — A. Therefore, given 4 queries, two of
which access 2 relations, one of which accesses 3 relations,
and one of which access 4 relations, the number of possible
serial strategy combinationsis (2!)(2!)(3!)(4!)=(2)(2)(6)(24)
= 576. The serial order is computed so that 8 <8, < ... <8,
where B}. is the size of relation Rj, j=1, ..., r(Hevnerand Yao,
1978).

SYSTEM COST EQUATIONS

A fully connected, reliable communication network
(Liu Sheng, 1992) with all servers having equal local storage
and processing capacity is assumed. A single instance of each
relation is allocated to the distributed database system
(Blankinship, 1991; Cornell, 1989; Goyal, 1994). (Data par-
titioning and data replication are not considered in this re-
search.)

When measuring system response time, the objective
cost function consists of three cost components: transmission
costs, local processing costs, and queuing costs. Costs are
measured in terms of the number of CPU cycles or time ticks
(Goyal, 1994) needed to complete a task. The system re-
sponse time is equal to the number of CPU cycles needed to
process Q={Q,, ..., Qq} queries.

Transmission cost equations are identical between any
two servers (Blankinship, 1991; Goyal, 1994), and costs are
based on the amount of data transmitted. Local processing
cost equations are also identical at any two servers, and costs
are based on the amount of data processed. Queuing costs are
based on the number of CPU cycles a query spends in queue
ateach server. Storage costs are considered negligible and are
not considered in the cost analysis.

Using the additional notation:

CS,: cumulative selectivity for Q, ="l g
QR : query result for Q n=1,..,q
QWT : wait time in queue for Q atS, n= Gii=1,.., 5+

LPT : local processing time for

processing Q_at S, n=d,00 g 540 59
NTT : network transfer time for

transferring Q from S, to §;, n=1,..,q;i.i

©: transmission of Q, to S, = s
p: CPU rate per CPU cycle

u: network transfer rate per CPU cycle

we state our cost equations as follows (Goyal, 1994):
QR =(CS)(®8) e Tl g L

B,-+QR,1

LPT = atSc =, aqi= 1 aani=l, 0 s
p
QR
n
NTT ;= fromSt0S, n=1,.,qii=1,..,s+l;i#1
QWTm=Tp ‘TQ Rl=1. . q = S
where,
TQ..= the CPU cycle S, places Q, into its queue
: §

p = the CPU cycle §, begins processing Q_

The objective cost function when computing data allo-
cations to minimize response time is to minimize:

L e

Journal of Database Management

Jan - Mar 2001 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

T
RT ="ty + ¢

t=1
where,

CH= {

and ¢ = system idle time while processing Q = {Q,, ..., Qq}.

The following example demonstrates cost computa-
tions:

Example

Given the relations R={R , R, R_}, with selectivities,
size P, and server allocations on S = (S, S, } as follows:

1if(Q, € Qin queue at S,

v (Q, € Q inprocess at S,

v (Q, € Q in transmision S, —S)
0 otherwise

Table 1: Example - Relations and Allocations

Relation | Selectivity B Allocation
R, 0.2 200 S
R, 0.4 400 S
R, 0.6 600 S,

and the following queries and query strategies (computed so
thtf 5B, 5..58):

Table 2: Example - Queries and Query Strategies

Query ID Query Query Strategy
€0 Join A, B, & C R,—>R —oR_
Q, JoinB & C BR—R.

Based on the example in Table 3 (see next page), the
system response time is 370 CPU cycles. The response time
for query Q,1s221-10=211 CPU cycles and the response time
for Q, is 370-15=355 CPU cycles.

DATA REALLOCATION HEURISTICS
We present two heuristics for data reallocation: Partial
REALLOCATE and Full REALLOCATE. Both algorithms
are greedy, iterative, “hill-climbing” heuristics that will not
traverse the same path twice. With each iteration, they will
find a lower cost solution, or they will terminate. Both
algorithms require as input: the current data allocation, the
relations, and the queries in the distributed database system.
We define the notation:
S={S,, ... S, S, }: setofservers (S_, = the new server)
R= {R R J: setof relations allocated to S,i=1, ..., s
hEEe R’[}: set of relations allocated to S_|
RNR'=0
R, = S permanent allocation ofR toS,j=1,..,5 i =1 s
R - S temporary allocation of R to S yj= 1,
O S(VReR R =8) i=1,
= S(R - Sm) =1,

(sol)j

where 8(Rj —§)and S(R}. = §,) is the objective cost function

evaluated for Rj — S, and RJ. = §,, respectively.
Eachrelation Rj must be allocated to a server and can be

allocated to only one server at any given time. Therefore,

For each Rj e (RUR’), Z x = 1 where

) I8 R =S R =5 S
i 0, otherw1se

Partial REALLOCATE
The steps of the Partial REALLOCATE algorithm are:
Step 1: Compute O,.

Step 2: For eachR € R, Compute O = S(R —=S.)
where for R’ =R - R ‘v’Rk se R”,R #>S_ l<k<(r-l)
MIN
Step 3: Compare OA= j O(l)_to 0.If0,20,
/ s+1)j

O, is the local optimum. If O, <O , update O t0 O,, R’ =R’
+R,R=R-R,R;=S§

Consider for example the relations and server alloca-
tions in Table 1. Assume S | =S, is the new server joining the
distributed system. Then, m Step 1, Partial REALLOCATE
computes the value of the objective function given the current
allocation. Assume O_ = 115. In Step 2, Partial REALLO-
CATE computes the value of the objective function when
independently moving each relation to S

s+l°

* Move only R, to S;: Compute O, ., =R, — S,); R”’=
(R, R}
*MoveonlyR; toS,: Compute O(sH)B:S(RB —S);R’"={R,
R}
C
*MoveonlyR_toS,: Compute O, .=8R.—S,);R”’={R,,
R;}
Assume O =100, O =75, and O = 125.

(s+DA g (s+1)B (s+1)C

Then, in Step 3, Partial REALLOCATE selects the move
resulting in the minimum cost, O, =0, . =75. Since O, <
O,, alower cost solution has been found; R is relocated from
S toS..

Partial REALLOCATE minimizes the number of 8(RJ.
— S,) evaluations while searching for a better solution. The
number of Partial REALLOCATE tests per additional server
is bounded by R, the number of relations in the distributed
database system. Partial REALLOCATE is not guaranteed to
find the optimum solution (as determined using Exhaustive
Search). However, if evaluating S(RJ — S_)) is expensive
and/or if Partial REALLOCATE’s percentage deviation from
the optimal solution is acceptable, Partial REALLOCATE is
more cost-effective than either Full REALLOCATE or Ex-
haustive Search.

Full REALLOCATE
The steps of the Full REALLOCATE algorithm are:
Step 1 & Step 2: Same as in Partial REALLOCATE.

38 Jan - Mar 2001

Journal of Database Management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

Vol. 12, No. 1
L -~ -~~~]

Table 3: Example - Cost Computations

Assuming p=10 bytes per unit time and p=20 bytes per unit time,

CPU cycle Processing and Computations (unit = CPU cycles)
10 ©,,; S, places Q, in its queue; QR ,=0; C§L=1.0
15 ©,; S, places Q, in its queue; QR,=0; CS,=1.0
30 S, begins processing Q ; QWT, =30-10=20;
200+0 _ 20
LI’T“=T ; QR =(1.0)(200)=200; CS =(1.0)(0.2)=0.2
50 Since Ry is also at S, NTT, =0; S, begins processing Q, with R,; QWT, =20;
400 + 200
Lpr, =20t ——5——" 80; or ~(0.2)400)=80; C5,=(0.2)(0.4=0.08
80 _ =4 400+0 = 40
110 912, N’I'I‘112 20 : Sl begins processing QZ;QWT21=95; LPT“=‘_10_’" :
QR =(1.0)(400)=400; CS,=(1.0)(0.4)=0.4
114 S, places Q, in its queue
400 _ g
150 0. NIT.. 20 ; S, begins processing Q ;QWT ,=36; LPT = :
QR =(0.8)(600)=48; CS =(0.08)(0.6)=0.048
170 S, places Q, in its queue
600+400 — 100
190 S, begins processing Q,; QWT,,=20; LPT22="—10—— ; QR,=(0.4)(400)=160;
CSZ=(O.4)(O.6)=0.24
48 =24
218 Ol(clienll; I I IlZ(clicm)zﬁ
221 Client receives result of Q
160 _ g
250 O, cieny 2(ctieny 20
370 client receives result of Q,
R
MIN REALLOCATE tests per additional server is bounded by r .
Step 3: Holding the R, yielding 01A= j b r=1
s+1)j

Full REALLOCATE iterates a greater number of times than

e R = S, R"=R"+ R, R = R_' R, F ull REALLOCATE Partial REALLOCATE before choosing from the yth itera-
relterates withanewR € R until either 0,20, orR=0. tion of the algorithm.
MIN
Step 4: Compare O = j O, fromthe yhit- EXAMPLE - COMPARISON OF PARTIAL,
eration, y = x yielding MIN(O_,,), 100 . If O 20,0 FULL REALLOCATE, EXHAUSTIVE

lxl)A

is the local optimum. If O <O , update O toO R’
R,R=R-R,R =S

SEARCH

We provide an illustrative example to demonstrate the

R,

As in Pamal REALLOCATE Full REALLOCATE
begins by computing S(R —S,,) foreach ReR. Rather than
outputting the MIN 8(R ——) S,) Full REALLOCATE holds
theRJyleldmgO atS soR =S _ ,R'= R’+R R=R-
R Full REALLOCATE then relterates with a new R e R
unul either O, 2 O or R = @. The number of Full

(x-1)A

benefits of implementing the REALLOCATE algorithms
over Exhaustive Search. We solve the same problem using
each of the three data reallocation algorithm — first using
Exhaustive Search, then using Partial REALLOCATE, and
finally using Full REALLOCATE. Response times have been
computed by the SimDDBMS simulator. The serial query
strategy (Hevner and Yao, 1979) has been implemented and

Journal of Database Management

Jan - Mar 2001 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

Table 4: System Parameters

Table 7: Exhaustive Search with 4 Relations, 2 Servers

Table 5: Relations

Parameter Value R R, 3. R, R
CPU Rate 50 1) 1 1 1 1 307
Network Transfer Rate 100 2) 1 1 1 2 279 ‘
Threshold 200 3) 1 1 2 1 273 |
Optimization Parameter Response Time | 4 1 1 2 2 242 |
=) 1 2 1 1 224
1 2 1 2 267

Relation Selectivity Size
R, 1.0 1000
R, 0.9 900
R 0.8 800
R. 0.7 700

Table 6: Queries

Queries
JoinA,B & C
JoinB & D
JoinA & C

| JoinA,B,C&D

query results are computed as described in (Blankinship,
1991; Goyal, 1994, Hevner and Yao, 1979). Assume the
system parameters in Table 4, the relations in Table 5, and the
queries in Table 6.

Base Case

The base case assumes there is only one server, S =
{S,}, in the system and VRj’s € R, Rj = §,. Therefore, the
initial allocation is R, =S, R13 =S, RC =5 Sv and RD = SI.
Using a poisson arrival rate for queries, SInDDBMS has
computed a total response time of 307 CPU cycles. Since 307
is greater than the specified threshold of 200, a new server is
added to the distributed database system.

Exhaustive Search
S={S,S,}: (incremental growth from s=1 to s+1=2 servers)

There are 16 possible allocations of 4 relations to 2
servers (see Table 7). The Exhaustive Search method finds
the lowest response time of 216, with the allocations (R, —
S).R;=S),R.—S),R,—»S)and (R, =2 8), (R, -
S), R. = S), (R, = S,). The first allocation found is
arbitrarily chosen as the new data allocation. So,R; = S, and
R.=8§,. Since the minimum total response time found with
two servers is greater than the specified threshold (216 > 200),
an additional server is added to the distributed database
system.

12) %2 1 2 2 224
13y 2 1 1 242
1T Ial) 2 1 2 273 3
ISyl 2 2 1 279 1
6y 2 % 2 2 307 |

S={S,, S,, S,}: (incremental growth from s=2 to s+1=3
servers)

There are 81 possible allocations of 4 relations to 3
servers. The Exhaustive Search method finds the minimum
response time of 182, with the allocations (R, — S), (R, —
S:)' (R 50 (R =38)and (R, —»S) (R SOHHR =
S,), (R, —8S)). Since the response time resulting from adding
the third server meets the specified threshold (182 <200), no
additional servers are added. The final data allocation found
by Exhaustive Search is R, = Sw RB =S, R. =S, R, = S‘
orR, =§,R; =S,,R.=S,,R =S, with the total response
time of 182 ticks.

Partial REALLOCATE

S={S,,S,}: (incremental growth from s=1 to s+1=2 servers)

There are R = 4 reallocation tests required. The re-
sponse time is computed for each independent allocation (see
Table 8). The Partial REALLOCATE algorithm finds the
lowest response time of 224, with the allocation (R D)
(R;—S,),and (R, — S)),(R, = S)), so R, = S,. Since 224
> 200, an additional server is added to the distributed database
system.

S ={S,, S,, S,}: (incremental growth from s=2 to s+1=3
servers)

Again, R = 4 reallocation tests are required. The re-
sponse time is computed for each independent allocation (see
Table 9). The Partial REALLOCATE algorithm finds the
lowest response time of 182, with the allocation (R, = S)),
(R13 —S,),and (R, —S,), R, > S)), so R.=S,. Since 182
< 200, Partial REALLOCATE terminates. The final data
allocation found by Partial REALLOCATE isR, =S R, =
S, RC =S,R,= Sl with the total response time of 182 CPU
cycles.

o

40 Jan - Mar 2001

Journal of Database Management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

Vol. 12, No. 1
S

Table 8: Partial REALLOCATE: 2 Servers, 4 Relations Table 10: First Iteration
| R—>S) Allocation RT R 5S) Allocation RT
[R,>S) 2111 244 R, > S, 2111 242
e R.—S.) 1121 273
R.—S 1§21 273 . -
(C 2) (RD —8S)) 1112 279
(R, —S) 1112 279
Table 9: Partial REALLOCATE: 3 Servers, 4 Relations Table 11: Second lteration
® 55) Allocation RT]‘ o AMipintion BT
i | R, >8S) 211 242

R, >

18

R, =8 R, >5,) 1212 267
(RC - S3) 1231 182 == =
R,—8) 1213 206 Table 12: Third Iteration

Full REALLOCATE (R, > 8) Allocation RT

S={S,,S,}: (incremental growth from s=1 to s+1=2 servers)
There are a maximum of ZR % =10 reallocation tests.

r=1

In the first iteration, the response time is computed for R = 4
independent allocations (see Table 10). The Full REALLO-
CATE algorithm finds the lowest response time of 224, with
the allocation (R,—S5),(R;—>8,),and(R.—>S),(R,—>S)),
soR; = S,. Full REALLOCATE reiterates with R, R, and
R, (see Table 11). The Full REALLOCATE algorithm finds
the lowest response time of 216 with the allocation (R, —S)),
(R13 — Sz), (RC -S,), R, - Sl), soR.= Sz. Full REALLO-
CATE reiterates with R, and R (see Table 12).

Since the minimum response time found in this itera-
tion is greater than the response time in the previous iteration
(244 > 216), Full REALLOCATE does not reiterate with 2
servers. Therefore, the allocationis (R, = S)), (R; = S)), (R,
-8) R, Sl) with a response time of 216 CPU cycles.
Since 216 > 200, an additional server is added to the distrib-
uted database system.

R, =S,,R.=S,, R, =S, with the total response time of 182
CPU cycles.

Summary

In this example, we have demonstrated that for at least
some problems, the Full and Partial REALLOCATE algo-
rithms find the same optimal data allocation solution that is
found using the Exhaustive Search algorithm. Additionally,
we have shown that the Full and Partial REALLOCATE
algorithms greatly reduce the problem search space, and
hence, the cost of determining the new data allocation. In this
particular example, the search space when incrementing from
S={S,} oS ={S,,S,} was reduced by 75% using Partial
REALLOCATE and 37.5% using Full REALLOCATE.
Incrementing fromS={S,S,} toS={S,S,, S,}, the search
space was reduced by 95% using Partial REALLOCATE and
87.6% using Full REALLOCATE. While Exhaustive Search

§$ =15, §;, §,}: (incremental growth from s=2 to s+1=3. 1 pyyia) REALLOCATE test 100% of their search space,

SErvers)
Even with S = {Sv Sz, S,} there are still only 10 ;)
maximum possible allocations with the Full REALLOCATE Table 13: Full REALLOCATE: First lteration

algorithm. We start with the best allocation (1221) from the
result of Full REALLOCATE at 2 servers.

Again, we independently reallocate eachR to S_ and
evaluate the resulting response time (see Table 13). The Full
REALLOCATE algorithm finds the minimum response time v < —
of 182 CPU cycles with the allocations (R, = S)), (R, = S,), = = —
(R.-8S,),(R,-»S)and(R, »S),(R,—>8S,),(R.—S),(] : -

_)CSI)' I{rbiEZrily “: hoosingAthe ﬁlrst l:l]iocati-on, RCB b 383, 52 Table 14: Full REALLOCATE: Second Iteration
now test reallocating an additional Rj to S, (see Table 14).

Since 216 > 182 and 182 < 200, Full REALLOCATE
terminates. The final data allocation found by Full REALLO-
CATE is RA=;~SI,RB=>SJ,RC=>S?RD=>Sl orRA=>SL,

R, S) Allocation RT |
T 216

R, —=8) Allocation RT
R, —S) 3321 242

(R, — S, 1323

L
Journal of Database Management Jan - Mar 2001 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Full REALLOCATE tested only 90% of its search space
whenincrementing fromS={S, }toS={S ,S,} and only 70%
when incrementing from S = {S, S,} to S ={S, S, §,}.

SIMULATION RESULTS

To simulate incremental growth and reallocation, in-
cluding the implementation of Partial and Full REALLO-
CATE, we have developed SimDDBMS. We have run over
5,800 simulation experiments. 1,100 smaller, tractable prob-
lems have been run using the Exhaustive Search optimal and
4,700 larger, more realistic problems have been run using
only Full and Partial REALLOCATE. The experiments have
been run to minimize system response time in the simple
query environment.

A “base case” simulation is run for each problem. The
“base case” assumes there is only one server in the distributed
database system, with all of the relations allocated to this one
server. (This parameter can be relaxed for distributed data-
base systems consisting of more than one server.)

The Exhaustive Search algorithm is used for bench-
mark comparisons. However, due to the exponential growth
in the search space of the Exhaustive Search algorithm,
Exhaustive Search computations are restricted to a maximum
of 4 servers and 5 relations (a combined search space of
1+32+243+1,024 = 1,300 possible allocations). The effect on
the system response time of each of the following parameters
(as independent variables) is studied: CPU processing rate,
network transfer rate, number of queries, number of relations.
In all graphs, each data point represents the average cost for
100 randomly generated problems. Fixed parameter values
are displayed in a box at the top of each graph.

Effect of CPU Rate

The REALLOCATE algorithms performed very close
to optimal across a broad range of CPU rates (see Figure 2).
We observed that at the lowest CPU rate, Full REALLO-
CATE was on average only 4.92% from the Exhaustive
Search optimal with a worst case of 28.4% from optimal.
Partial REALLOCATE on average deviated 6.66% from the
Exhaustive Search optimal with a worst case of 32.53%. As
the CPU rate increased, both REALLOCATE algorithms
achieved results even closer to optimal. Additionally, Full
REALLOCATE on average reduced execution time by at
least 94.5% when compared to Exhaustive Search and Partial
REALLOCATE on average reduced execution time by at
least 96.5% compared to Exhaustive Search.

When comparing the results of Full and Partial REAL-
LOCATE with a larger number of relations, we found that
Partial REALLOCATE actually performed better than Full
REALLOCATE at the lower CPU rates and matched Full
REALLOCATE at the higher CPU rates (see Figure 3).
Partial REALLOCATE required significantly more servers
to achieve these results, often close to double the number the
number of servers that Full REALLOCATE specified.

Response Time (Ticks)

Figure 2

Average Response Time with Varying CPU Rate
Number of Servers = 3

Network Transfer Rate = 1000
Number of Relations = 5
Number of Queries = 25
1 Threshold = 1
|

CPU Rate
I Exhaustive Search £23 Full REALLOCATESS Partial REALLOCATE

Effect of Network Transfer Rate

As with the effect of varying CPU rates, both Partial and
Full REALLOCATE performed well against Exhaustive
Search when varying network transfer rate (see Figure 4). At
worst, Full REALLOCATE performed within 3% of optimal
and Partial REALLOCATE within 2.7%. As network transfer
rate increased beyond 100, the effect of network transfer rate
became minimal.

Effect of Number of Queries

When increasing the number of queries (see Figure 5),
Full REALLOCATE achieved solutions on average of only
3.3% worse than the Exhaustive Search optimal, while Partial
REALLOCATE achieved solutions averaging 4% worse than
optimal. Witha larger number of servers and relations, Partial
and Full REALLOCATE obtained identical final cost results.
Partial REALLOCATE, however, required a larger number
of servers than Full REALLOCATE.

Figure 3

Average Response Time with Varying CPU Rate
FINAL Result - Varying Number of Servers

Network Transfer Rate = 1000
Number of Relations = 25
Number of Queries = 25
Threshold = 1

(Avg # Servers: FR=10.83; PR=17.81)

(Avg # Servers: FR=10.03; PR=17.38) (Avg # Servers: FR=2.47; PR=6.54)|

(Avg # Servers: FR=3.98; PR=9.81)
298 298

289 289

g4
1

CPU Rate
£ Full REALLOCATE 8N Partial REALLOCATE

42 Jan - Mar 2001

Journal of Database Management

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

Vol. 12, No. 1

Figure 4

Average Response Time with Varying Network Transfer Rate
Nurmber of Servers =3

930 CPU Rate = 100

S Number of Relations = 5
Number of Queries = 25
Threshold = 1

&

s

Response Time (ticks)

0
Network Transfer Rate

BB Exhaustive Search 2] Full REALLOCATE SN Partial REALLOCATE

Figure 5

Average Response Time with Varying Number of Queries
Number of Servers = 3

CPU Rate = 100
Network Transfer Rate = 1000
Number of Relations = 5

Threshold = 1

Response Time (Ticks)

5 b 50
Number of Queries
B Exhaustive Search T2 Full REALLOCATE &Y Partial REALLOCATE

Effect of Number of Relations

Varying the number of relations did not effect the
comparative results of Partial REALLOCATE and Full RE-
ALLOCATE. Once again, Partial REALLOCATE required a
greater number of servers than Full REALLOCATE in order
to achieve the same cost results. Examining the response time
with an equivalent number of servers (Figure 6) showed that
Partial REALLOCATE’s response time grew linearly as the
number of relations increased. Thus, the efficiency of Partial
REALLOCATE dropped per server as compared to Full
REALLOCATE.

Figures 7 and 8 compare the execution times of the
three data reallocation algorithms. The network transfer rate
is varied in Figure 7 and the number of queries is varied in
Figure 8 (varying the other system parameters showed similar

Figure 6
Average Response Time with Varying Number of Relations
Equivalent Number of Servers
500
CPU Rate = 100
Network Transfer Rate = 1000 (Avg # Servers = 3.80)
Number of Queries = 25
Threshold = 1 461)
450 7ot
St
i [e A DO R T T et L
& 400 W
—"‘
e T T e ‘
= o
%- 5 (Avg # Servers = 3.79)
& avgoserven = TR
"’—’
—"—
i, | 300
w
i 298
20
5 15 5
Number of Relations
58 Full REALLOCATE £83 Parcal REALLOCATE
Figure 7
r
Algorithm Execution Times with Varying Network Transfer Rate
180
CPU Rate = 100
Number of Queries = 25
160 A Number of Relations =5
/ | \ | Threshold = 1
190 - }
/ | \
120 1 ¥
3
£
j o
H
E 80
2
-
)
©
20
0
1 10 100 1000
Network Transfer Rate
S Exhaustive Search 783 Full REALLOCATE = Pamal REALLOCATE
Figure 8
Algorithm Execution Times with Varying Number of Queries
260
CPU Rate = 100
240 + Network Transfer Rate = 1000 —
Number of Relations = 5 | /
220 { Threshold = 1
v //
180 — /
;e /
& uo
H L
£
et /"
3
i /
60 //
0
2
: Agsssscococmoss=s=ooossmsmmsmom—— {
5 5 =

Number of Queries
F83 Exhaustive Searcht®3 Full REALLOCATE == Partial REALLOCATE

5 —

Journal of Database Management

Jan - Mar 2001 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

Table 15: Comparison of Average Number of Algorithm
Tests with Varying Network Transfer Rate

Table 17: Algorithm of Choice

Cost Level Algorithm of Choice |
Network Transfer Rate Relation-server testing Hi& Partial
1 10 100 1000 Low Partial, Full
Partial REALLOCATE| 7.02 5.90 9712 5.90 Additional Server High Full
Full REALLOCATE 1137 o) 15.20 1323 Low Partial, Full |

Exhaustive Search 365.34 |1,125.9211,136.16 |1,146.40

Table 16: Comparison of Average Number of Algorithm
Tests with Varying Number of Queries

Number of Queries
5 25 50
Partial REALLOCATE 6.29 5.90 5.60
Full REALLOCATE 13.85 15.25 15.50
Exhaustive Search 862.63 1,146.40 |1,177.12

results). Figure 7 shows that Full REALLOCATE in the best
case, only required 3.58% of the time required by Exhaustive
Search, and in the worst case, only required 7.73% of Exhaus-
tive Search. Partial REALLOCATE, in the best case, only
required 1.74% of the time required by Exhaustive Search,
and in the worst case, only required 6. 16% Exhaustive Search’s
time. Figure 8 shows similar results with varying number of
queries. In the best case, Full REALLOCATE only required
4.03% of Exhaustive Search’s time and only 5.75% in the
worst case. Partial REALLOCATE varied from a low of
1.78% to a high of 2.81% of Exhaustive Search’s time.

Tables 15 and 16, which correspond to the parameters
in Figures 7 and 8, compare the average number of tests
requigkd for each of the three reallocate algorithms. Each line
in the able represents the average of 100 randomly generated
problems.

Summary

In summary, the Partial and Full REALLOCATE algo-
rithms have been shown to considerably reduce problem
search space, and hence, the cost of testing relation-server
combinations. If the cost of each test is one unit, implement-
ing Partial REALLOCATE over exhaustive search results in
a cost savings of S® - R units; implementing Full REALLO-
CATE over exhaustive search results in a cost savings of
SR - units.

Using SimDDBMS, parametric studies across a range
of parameters, including CPU Rate, Network Transfer Rate,
Number of Queries, and Number of Relations have been
performed. The parametric studies have demonstrated the
consistency of the REALLOCATE algorithms across a broad
range of parametric values. Additionally, the simulation
experiments have shown that Partial REALLOCATE and

Full REALLOCATE provide good solutions as compared to
exhaustive search optimums.

Partial and Full REALLOCATE have different
strengths. As shown in Table 17, if the cost of testing relation-
server combinations is high, Partial REALLOCATE is the
algorithm of choice. This is because Partial REALLOCATE
has a much smaller search space than Full REALLOCATE
(R vs , where R is the number of relations in the

distributed database system). If the cost of adding additional
servers is high, Full REALLOCATE is the algorithm of
choice. As demonstrated in the simulation experiments, Par-
tial REALLOCATE is a server-hungry algorithm. It gener-
ally requires two to three times as many servers as Full
REALLOCATE in order to find a comparable solution.

CONCLUSIONS

We have presented an incremental growth framework
and two data reallocation heuristics — Partial REALLO-
CATE and Full REALLOCATE — for incremental growth
and reallocation in distributed database systems. Through
simple examples and then through parametric studies per-
formed using the SimDDBMS simulator, we have demon-
strated the robustness of both data reallocation heuristics.
Due to their linear complexity, the Partial and Full REALLO-
CATE algorithms can be used for large, complex problems
while achieving good results as compared to the exhaustive
search optimal.

REFERENCES

Apers, Peter M. G. (1988). “Data Allocation in Distributed
Database Systems,” ACM Transactions on Database Systems, 13(3),
September, 263-304.

Blankinship, Rex (1991). “*An Iterative Method for Distributed
Database Design,” Ph.D. Dissertation, University of Maryland at
College Park.

Brunstrom, Anna, Scott T. Leutenegger, and Rahul Simha
(1995). “Experimental Evaluation of Dynamic Data Allocation Strat-
egies in a Distributed Database with Changing Workloads,” CIKM,
395-402.

Carey, Michael J. and Hongjun Lu (1986). “Load Balancing in
a Locally Distributed Database System,” Proceedings of the ACM-
SIGMOD International Conference on Management of Data, Wash-
ington, D.C., 108-119.

Ceri, Stefano, Shamkant Navathe, and Gio Wiederhold
(1983).“Distribution Design of Logical Database Schemas,” [EEE
Transactions on Computers, SE-9(4),487-504.

44 Jan - Mar 2001

Journal of Database Management

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com

Vol. 12, No. 1

Chin, Amita Goyal (1999). “An Optimization Algorithm for
Dynamic Data Migration in Distributed Database Systems,” Journal of
Computer Information Systems, 39(4).

Chu, Wesley W. (1969). “Optimal File Allocation in a Multiple
Computer System,” IEEE Transactions on Computers, C-18(10), 885-
890.

Ciciani, Bruno, Daniel M. Dias, and Philip S. Yu (1990).
“Analysis of Replication in Distributed Database Systems,” IEEE
Transactions on Knowledge and Data Engineering, 2(2), 247-261.

Comell, Douglas W. (1989). “On Optimal Site Assignment for
Relations in the Distributed Database Environment,” IEEE Transac-
tion on Software Engineering, 15(8), 1004-1009.

Comnell, Douglas W. and Philip S. Yu (1990). “Relation Assign-
ment in Distributed Transaction Processing Environment,” Proceed-
ings of the Sixth International Conference on Data Engineering, 50-55.

Date, C.J.(1991). An Introduction to Database Systems, Addison
Wesley.

Daudpota, Nadeem (1998). “Five Steps to Construct a Model of
Data Allocation for Distributed Database System,” Journal of Intelli-
gent Information Systems, 11(2), 153-168.

Du, Xiaolin and Fred J. Maryanski (1988). *‘Data Allocation in
a Dynamically Reconfigurable Environment,” Proceedings of the
Fourth International Conference on Data Engineering, 74-81.

Eswaran, K., (1974).“Placement of Records in a File and File
Allocation in a Computer Network,” Proceedings IFIPS Conference,
304-307.

Garey, Michael R. and David S. Johnson (1979).Compilers and
Intractability — A Guide to the Theory of NP-Completeness, W. H.
Freeman and Company.

Ghosh, Deb and [shwar Murthy (1991). “A Solution Procedure
for the File Allocation Problem with File Availability and Response
Time,” Computers and Operations Research, 18(6), 557-568.

Ghosh, Deb, Ishwar Murthy, and Allen Moffett (1992). “File
Allocation Problem: Comparison of Models with Worst Case and
Average Communication Delays,” Operations Research, 40(6), 1074-
1085.

Goyal, Amita (1994). “Incremental Growth and Reallocation in
Distributed Database Systems,” Ph.D. Dissertation, The University of
Maryland at College Park.

Hevner, Alan R. and S.B. Yao (1978). “Optimization of Data
AccessinDistributed Systems,” Computer Science Department, Purdue
University, Technical Report TR281.

Hevner, Alan R. and S.B. Yao (1979). “Query Processing in
Distributed Database Systems,” IEEE Transactions on Software Engi-
neering, SE-5(3).

Ladjel, Bellatreche, Kamalakar Karlapalem, and Qing
Li(1998).“An Iterative Approach for Rules and Data Allocation in
Distributed Deductive Database Systems,” Proceedings of the 1998
ACM 7th International Conference on Information and Knowledge
Management, 356-363.

Laning, Lawrence J. and Michael S. Leonard, “File Allocation
in a Distributed Computer Communication Network,” IEEE Transac-
tions on Software Engineering, Vol. C-32, No. 3, March 1983, pp. 232-
244,

Lee, Heesok, and Otivia R. Liu Sheng (1992). A Multiple
Criteria Model for the Allocation of Data Files in a Distributed
Information System,” Computers and Operations Research, 19(1),21-
33.

Levin, K.D. (1982). *Adaptive Structuring of Distributed Data-
bases,” Proceedings of the National Computer Conference, 691-696.

Levin, K. D., and H. L. Morgan (1978). ““A Dynamic Optimiza-
tion Model for Distributed Databases,” Operations Research, 26(5),
824-835.

Liu Sheng, Olivia R. (1992).“Optimization of File Migration
Policies in Distributed Computer Systems,” Computers and Opera-
tions Research, 19(5), 335-351.

Porcar, H.(1982). “File Migration in Distributed Computing
Systems,” Ph.D. Thesis, University of California at Berkeley.

Rivera-Vega, Pedro 1., Ravi Varadarajan, and Shamkant B.
Navathe (1990)."Scheduling Data Redistribution in Distributed Data-
bases,” Proceedings of the Symposium on Reliability in Distributed
Software and Database Systems, 166-173.

Segall, Adrian (1976)."Dynamic File Assignment in a Com-
puter Network,” IEEE Trans. Automat. Control, AC-21, April , 161-
173.

So, Siu-Kai, Ishfaq Ahmad, and Kamalakar Karlapalem
(1998).”’Data Allocation Algorithm for Distributed Hypermedia Docu-
ments,” The 1998 IEEE 17th Symposium on Reliable Distributed
Systems, , 473-478.

Son, Sang H. (1988). “‘Replicated Data Management in Distrib-
uted Database Systems,” SIGMOD Record, 17(4),

Tambhankar, Ajit and Sudha Ram (1998). ** Database Fragmen-
tation and Allocation: An Integrated Methodology and Case Study,”
IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 288-305.

Theel, Oliver E and Henning Pagnia (1996). “Bounded Dy-
namic Data Allocation in Distributed Systems,” The 1996 3rd Interna-
tional Conference on High Performance Computing, 126-131.

Wolfson, Ouri and Sushil Jajodia, and Yixiu Huang (1997). “An
Adaptive Data Replication Algorithm,” ACM Transactions on Data-
base Systems, 22(2), 255-314.

Dr. Amita Goyal Chin is an Associate Professor in the Department of Information Systems at Virginia Common-
wealth University. She received her B.S. in computer science and M.S. and Ph.D. in information systems, all from
The University of Maryland at College Park. Her research interests include distributed database systems, text
databases and document storage and handling, and collaborative technologies.

Journal of Database Management

Jan - Mar 2001 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.com

